Estimating and Correcting Global Weather Model Error



Chris Danforth, Eugenia Kalnay, Takemasa Miyoshi University of Maryland January 18, 2006 NOAA THORPEX Workshop

Outline

- Brief review of empirical model error correction
- SPEEDY model
- Generation of 6-hour forecasts and analysis increments using NCEP reanalysis
- Separation of increments into seasonal, diurnal, and state-dependent components
- Estimation and correction of model errors
- Results: our method is effective and computationally feasible
- Conclusions

Leith (1978), first to formulate state-dependent correction procedure

- given a model: $\dot{\mathbf{x}} = \mathbf{M}(\mathbf{x})$
- sought an improved model of the form: $\dot{\mathbf{x}} = \mathbf{M}(\mathbf{x}) + \mathbf{L}\mathbf{x} + \mathbf{c}$

Leith (1978), first to formulate state-dependent correction procedure

- given a model: $\dot{\mathbf{x}} = \mathbf{M}(\mathbf{x})$
- sought an improved model of the form: $\dot{\mathbf{x}} = \mathbf{M}(\mathbf{x}) + \mathbf{L}\mathbf{x} + \mathbf{c}$
- the tendency error **g** of the improved model is given by

$$\mathbf{g} = \dot{\mathbf{x}}^{t} - \mathbf{M}(\mathbf{x}^{t}) - \mathbf{L}\mathbf{x}^{t} - \mathbf{c}$$

where \mathbf{x}^{t} is the state taken as truth (e.g. reanalysis)

Leith (1978), first to formulate state-dependent correction procedure

- given a model: $\dot{\mathbf{x}} = \mathbf{M}(\mathbf{x})$
- sought an improved model of the form: $\dot{\mathbf{x}} = \mathbf{M}(\mathbf{x}) + \mathbf{L}\mathbf{x} + \mathbf{c}$
- the tendency error **g** of the improved model is given by

$$\mathbf{g} = \dot{\mathbf{x}}^{t} - \mathbf{M}(\mathbf{x}^{t}) - \mathbf{L}\mathbf{x}^{t} - \mathbf{c}$$

where \mathbf{x}^{t} is the state taken as truth (e.g. reanalysis)

• derived an empirical correction by minimizing $<\mathbf{g}^{\top}\mathbf{g}>$ with respect to \mathbf{c} and L

Leith (1978), first to formulate state-dependent correction procedure

- given a model: $\dot{\mathbf{x}} = \mathbf{M}(\mathbf{x})$
- sought an improved model of the form: $\dot{\mathbf{x}} = \mathbf{M}(\mathbf{x}) + \mathbf{L}\mathbf{x} + \mathbf{c}$
- the tendency error **g** of the improved model is given by

$$\mathbf{g} = \dot{\mathbf{x}}^{t} - \mathbf{M}(\mathbf{x}^{t}) - \mathbf{L}\mathbf{x}^{t} - \mathbf{c}$$

where \mathbf{x}^{t} is the state taken as truth (e.g. reanalysis)

- derived an empirical correction by minimizing $<\mathbf{g}^{\top}\mathbf{g}>$ with respect to \mathbf{c} and L
- c_L is a state-independent bias estimate
- $L_L x$ is a state-dependent estimate of the model error

DelSole and Hou (1999)

- applied Leith's procedure to a 2-layer QG model on an 8 x 10 grid (N=160 degrees of freedom)
- perturbed the model parameters to generate 'nature'
- resulting model errors were strongly state-dependent
- Leith's state-dependent error correction extended forecast skill to within limits imposed by observational noise
- computationally prohibitive for operational use

Generate time series of 6-hour model forecasts and analysis increments relative to the NCEP reanalysis using a simple but realistic GCM.

I. Estimate the monthly bias.

- I. Estimate the monthly bias.
 - a. Compare the impact of correcting the model integration with statistical corrections performed *a posteriori*.

- I. Estimate the monthly bias.
 - a. Compare the impact of correcting the model integration with statistical corrections performed *a posteriori*.
- II. Estimate and correct the diurnal errors.

- I. Estimate the monthly bias.
 - a. Compare the impact of correcting the model integration with statistical corrections performed *a posteriori*.
- II. Estimate and correct the diurnal errors.
- III. Estimate the state-dependent errors

- I. Estimate the monthly bias.
 - a. Compare the impact of correcting the model integration with statistical corrections performed *a posteriori*.
- II. Estimate and correct the diurnal errors.
- III. Estimate the state-dependent errors
 - a. by an approximation of Leith's method.

- I. Estimate the monthly bias.
 - a. Compare the impact of correcting the model integration with statistical corrections performed *a posteriori*.
- II. Estimate and correct the diurnal errors.
- III. Estimate the state-dependent errors
 - a. by an approximation of Leith's method.
 - b. by a new low-dimensional method based on regression.

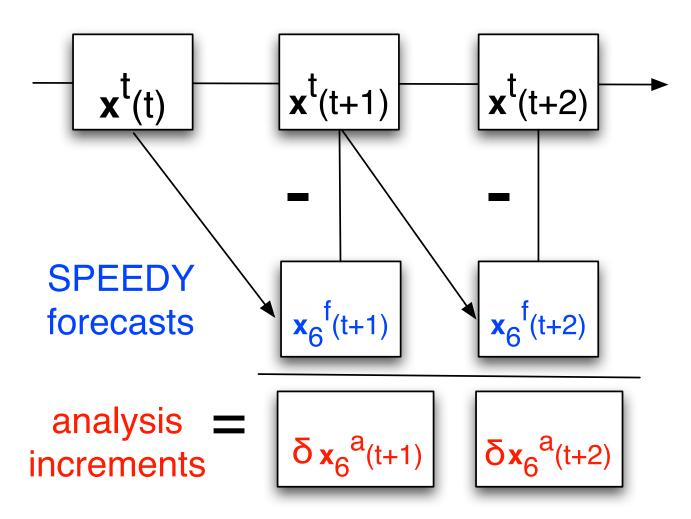
- I. Estimate the monthly bias.
 - a. Compare the impact of correcting the model integration with statistical corrections performed *a posteriori*.
- II. Estimate and correct the diurnal errors.
- III. Estimate the state-dependent errors
 - a. by an approximation of Leith's method.
 - b. by a new low-dimensional method based on regression.
- IV. Correct the state-dependent errors.

SPEEDY Model, Molteni (2003)

- primitive equations, global spectral model
- contains parameterizations of condensation, convection, clouds, radiation, surface fluxes, and vertical diffusion
- T30 horizontal resolution, 7 sigma levels
- integrates vorticity, divergence, temperature, specific humidity, and surface pressure
- post-processed into horizontal wind, temperature, specific humidity, geopotential height, and surface pressure on 96x48 grid, 7 pressure levels
- dissipation and time-dependent forcing determined by climatological SST, surface moisture, albedo, land-surface vegetation, etc.

Generating Time Series of Model Forecasts and Errors

1982-1986 NCEP Reanalysis

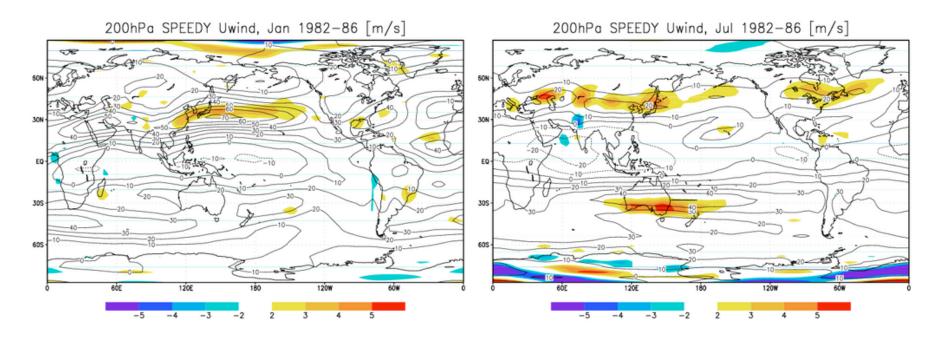


Time Series and 5-year Climatology

- $\mathbf{x}_{6}^{f}(t)$ = time series of model states
- $\delta \mathbf{x}_6^{\rm a}(t)$ = corresponding analysis increments
- 5-year SPEEDY 6-hour climatology given by monthly mean $\langle \mathbf{x}_6^{\mathrm{f}} \rangle$
- 5-year reanalysis climatology given by monthly mean $\langle \mathbf{x}^t \rangle$
- Bias given by monthly mean $<\delta \mathbf{x}_6^a>$

200hPa Zonal Wind Monthly Bias

5-year Reanalysis Climatology $< \mathbf{x}^t >$ (contour), Bias $< \delta \mathbf{x}_6^a >$ (color) January



- SPEEDY underestimates zonal wind on the poleward side of the winter hemisphere jet.
- Exhibits large winter polar bias.

Generate three daily 5-day forecasts for each state in 1987 (*independent data*), verifying against NCEP reanalysis.

Generate three daily 5-day forecasts for each state in 1987 (*independent data*), verifying against NCEP reanalysis.

1. <u>Control</u>: Integrate biased model, $\dot{\mathbf{x}} = \mathbf{M}(\mathbf{x})$

Generate three daily 5-day forecasts for each state in 1987 (*independent data*), verifying against NCEP reanalysis.

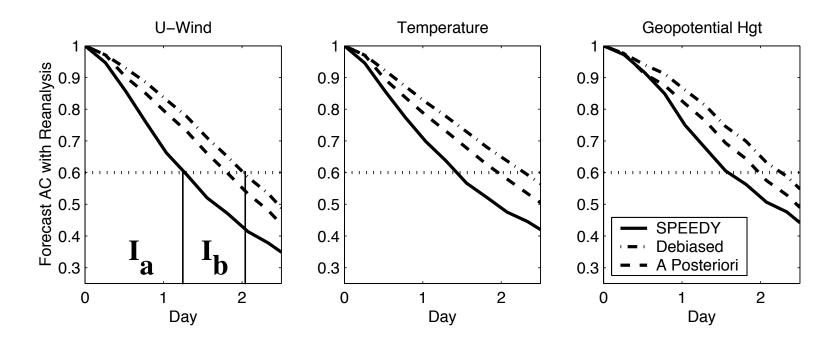
- 1. <u>Control</u>: Integrate biased model, $\dot{\mathbf{x}} = \mathbf{M}(\mathbf{x})$
- 2. Corrected <u>a posteriori</u>: Correct control forecast by bias $<\delta \mathbf{x}_6^a>$ at 6 hours, bias $<\delta \mathbf{x}_{12}^a>$ at 12 hours, etc.

Generate three daily 5-day forecasts for each state in 1987 (*independent data*), verifying against NCEP reanalysis.

- 1. <u>Control</u>: Integrate biased model, $\dot{\mathbf{x}} = \mathbf{M}(\mathbf{x})$
- 2. Corrected <u>a posteriori</u>: Correct control forecast by bias $<\delta \mathbf{x}_6^a>$ at 6 hours, bias $<\delta \mathbf{x}_{12}^a>$ at 12 hours, etc.
- 3. Corrected <u>online</u>: Integrate model, $\dot{\mathbf{x}} = \mathbf{M}(\mathbf{x}) + \frac{\langle \delta \mathbf{x}_6^a \rangle}{\Delta t}$,
- $<\delta {\bf x}_6^{\rm a}>$ is a daily linear interpolation

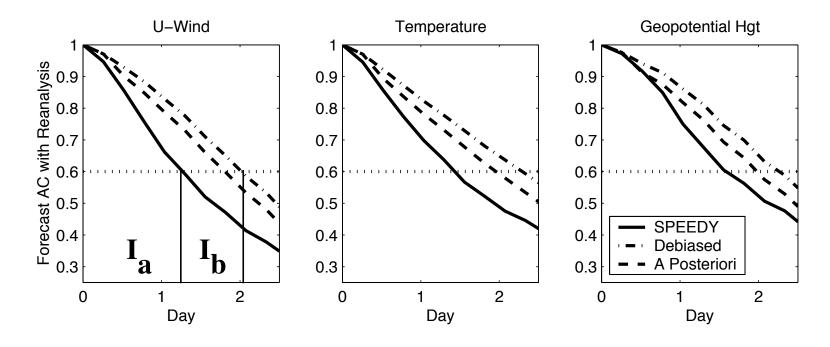
(e.g. on July 1,
$$<\delta x_6^a> = \frac{<\delta x_6^a(Jun)> + <\delta x_6^a(Jul)>}{2}$$
)

500hPa November 1987 Global Mean Anomaly Correlation



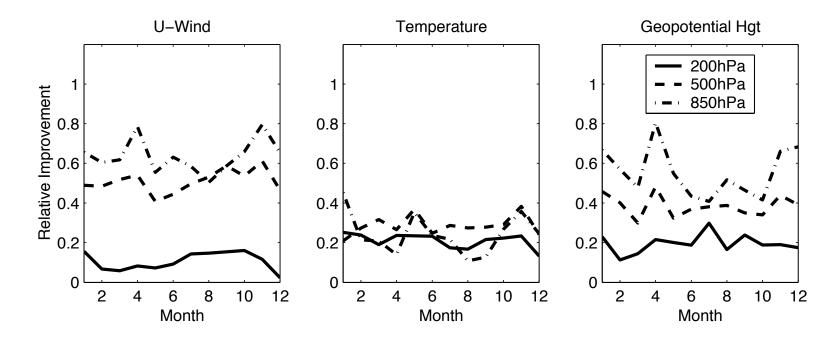
• Monthly bias correction gives substantial forecast improvement.

500hPa November 1987 Global Mean Anomaly Correlation



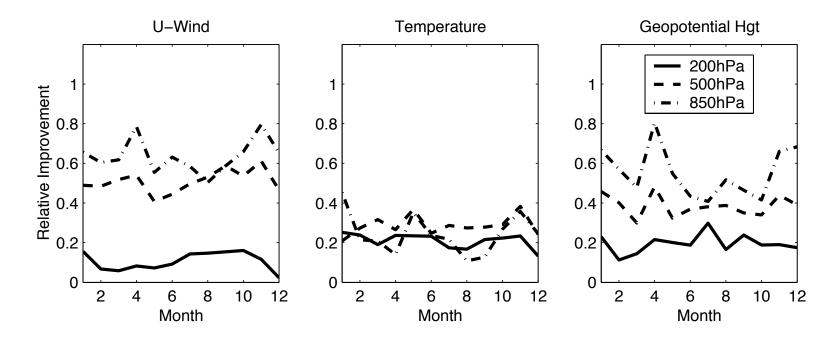
- Monthly bias correction gives substantial forecast improvement.
- Online correction performs better than a posteriori correction.

Improvement of Online Correction Relative to Control



• Online correction is most effective at lower levels.

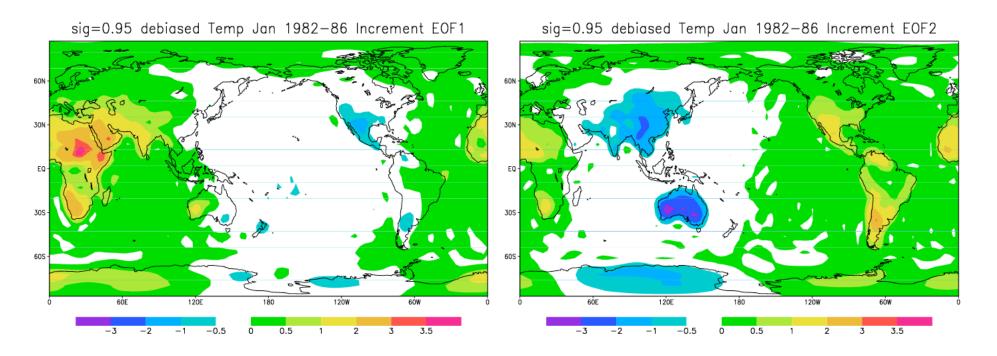
Improvement of Online Correction Relative to Control



- Online correction is most effective at lower levels.
- Improvements are uniform across levels in T, across seasons by level.

II. Diurnal Bias Correction

Leading EOFs of $C_{\delta x^a \delta x^a}$, T at $\sigma = 0.95$, Jan 1982-1986

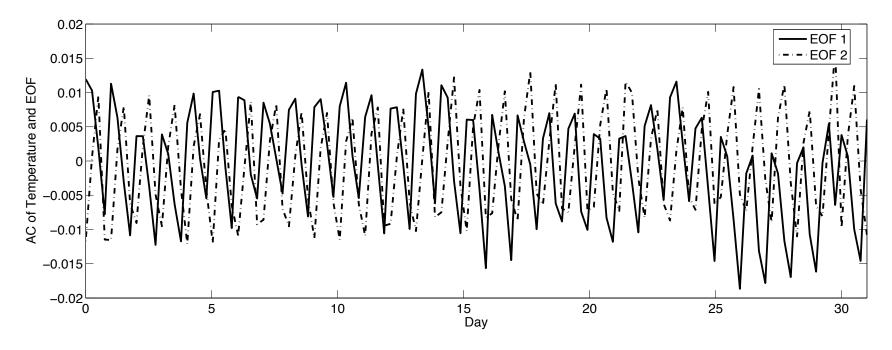


- Lack of diurnal forcing results in wavenumber 1 structure in the errors
- SPEEDY underestimates (overestimates) near surface daytime (night-time) temperatures, more prominent over land

II. Diurnal Bias Correction

Principal Components

• Project leading EOFs onto anomalous analysis increments (Jan '83)



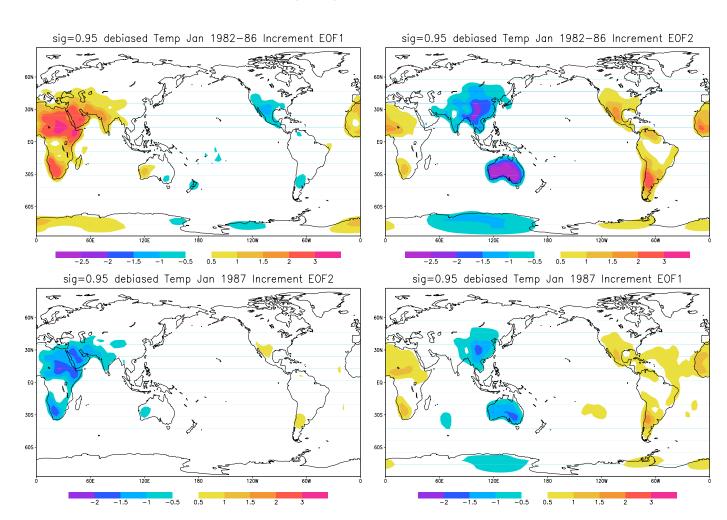
- Leading pair of EOFs out of phase by 6 hours
- Find average strength of daily cycle over Jan 1982-86
- Compute diurnal correction as a function of the time of day

II. Diurnal Bias Correction

EOFs of $C_{\delta x^a \delta x^a}$

January 1982-1986

Diurnally Corrected 1987



• Diurnal correction substantially reduces error amplitude

Leith (1978) Empirical Correction Operator

- Forecast state covariance: $C_{x^fx^f} = \langle x_6^{f\prime} x_6^{f\prime \top} \rangle$
- Cross covariance: $C_{\delta x^a x^f} = <\delta x_6^{a'} x_6^{f'\top} >$

Leith's correction operator, given by $L = C_{\delta x^a x^f} C_{x^f x^f}^{-1}$, provides a state-dependent correction:

$$\dot{\mathbf{x}} = \mathbf{M}(\mathbf{x}) + \left[\mathbf{L}\mathbf{x}' + \mathbf{c}\right] \frac{1}{\Delta t}$$

where
$$\mathbf{c} = <\delta \mathbf{x}_6^{\mathrm{a}}>$$

Problem: Direct computation of Lx^f requires $O(N^3)$ floating point operations *every* time step!

Approximation of Leith correction operator:

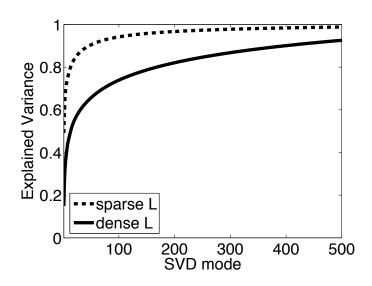
• univariate covariances generate block diagonal structure

Approximation of Leith correction operator:

- univariate covariances generate block diagonal structure
- 3000km covariance localization introduces sparsity to each block

Approximation of Leith correction operator:

- univariate covariances generate block diagonal structure
- 3000km covariance localization introduces sparsity to each block



Explained variance of the SVD corresponding to *u* at sigma=0.2 for the dense and sparse Leith operators.

- 400 modes required to explain 90% of variance in dense L
- 40 modes required to explain 90% of variance in sparse L

First step in our new approach:

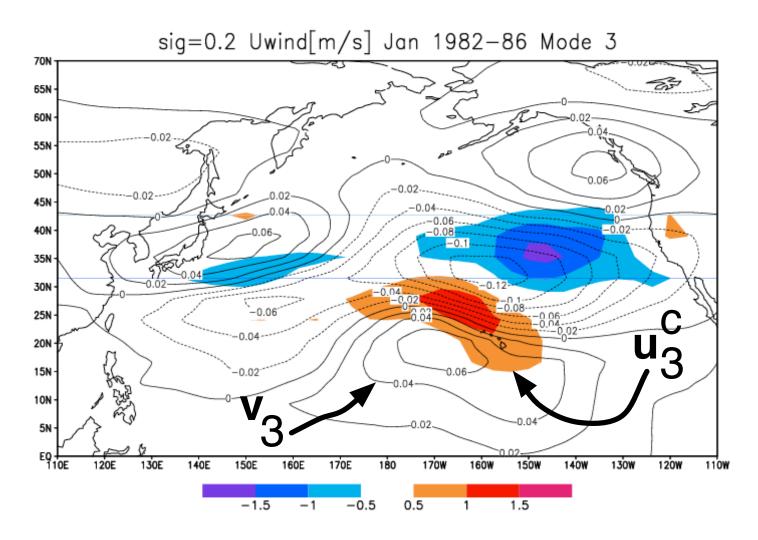
Low-Dimensional Approximation based on regression

First step in our new approach:

Low-Dimensional Approximation based on regression

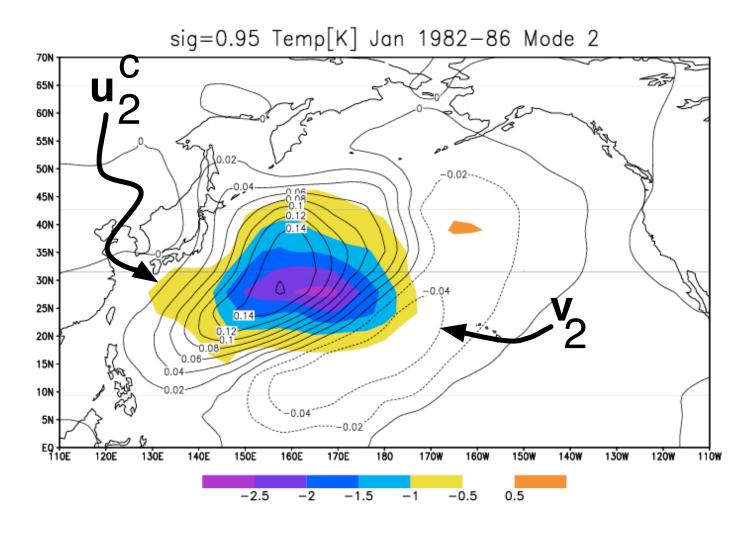
• SVD of the sparse analysis increment & state covariance, $C_{\delta \mathbf{x}^a \mathbf{x}^f} = U \Sigma V^{\top}$, identifies pairs of spatial patterns or EOFs (\mathbf{u}_k and \mathbf{v}_k) that explain as much of possible of the mean-squared temporal covariance between the analysis increment and state anomalies.

Analysis inc. (color) and state (contour) coupled signals



• \mathbf{u}_3 suggests shifting the anomaly \mathbf{v}_3 northeast (over the dependent sample)

Analysis inc. (color) and state (contour) coupled signals



• \mathbf{u}_2 suggests damping the anomaly \mathbf{v}_2 (over the dependent sample)

First step in our new approach:

Low-Dimensional Approximation based on regression

- SVD of the sparse analysis increment & state covariance, $C_{\delta \mathbf{x}^a \mathbf{x}^f} = U \Sigma V^{\top}$, identifies pairs of spatial patterns or EOFs (\mathbf{u}_k and \mathbf{v}_k) that explain as much of possible of the mean-squared temporal covariance between the analysis increment and state anomalies.
- Principal Components: project EOFs onto dependent sample

$$a_k(t) = \mathbf{u}_k^{\top} \cdot \delta \mathbf{x}^{a\prime}(t)$$
$$b_k(t) = \mathbf{v}_k^{\top} \cdot \mathbf{x}^{f\prime}(t)$$

First step in our new approach:

Low-Dimensional Approximation based on regression

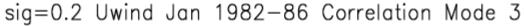
- SVD of the anomalous analysis increment & state covariance, $C_{\delta \mathbf{x}^a \mathbf{x}^f} = U \Sigma V^{\top}$, identifies pairs of spatial patterns or EOFs (\mathbf{u}_k and \mathbf{v}_k) that explain as much of possible of the mean-squared temporal covariance between the analysis increment and state anomalies.
- Principal Components: project EOFs onto dependent sample

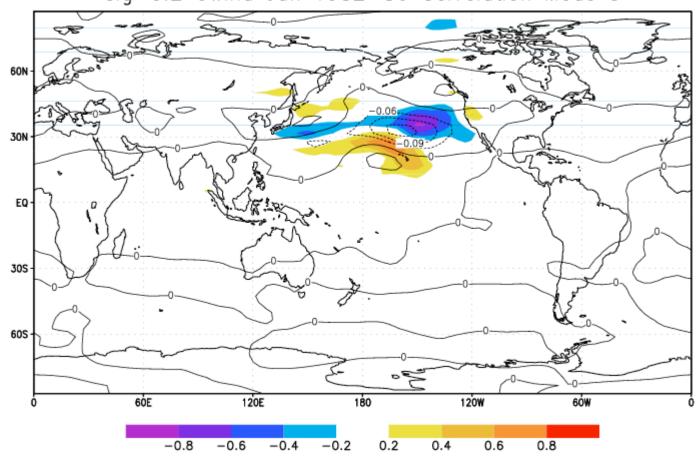
$$a_k(t) = \mathbf{u}_k^{\top} \cdot \delta \mathbf{x}^{a\prime}(t)$$
$$b_k(t) = \mathbf{v}_k^{\top} \cdot \mathbf{x}^{f\prime}(t)$$

Heterogeneous correlation maps:

$$\rho[\delta \mathbf{x}^{a\prime}, b_k] = \left(\frac{\sigma_k}{\sqrt{\langle b_k^2 \rangle}}\right) \mathbf{u}_k$$

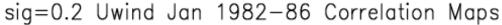
Analysis inc. (color) and state (contour) coupled signals

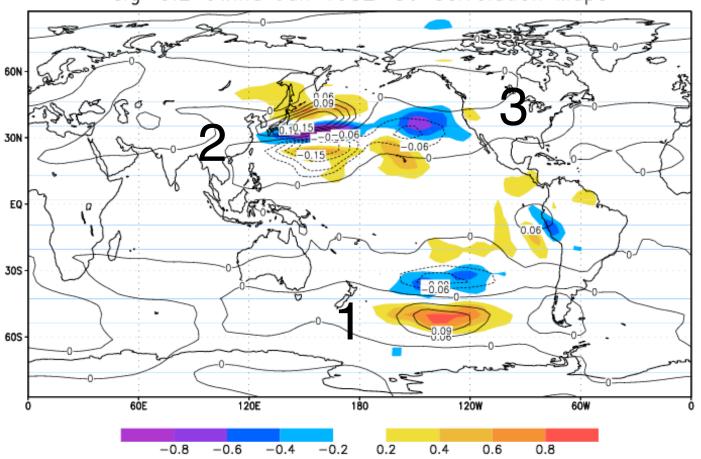




• \mathbf{u}_3 is predictable given the forecast anomaly $\mathbf{x}^{f\prime}$ (over the dependent sample)

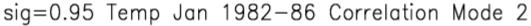
Analysis inc. (color) and state (contour) coupled signals

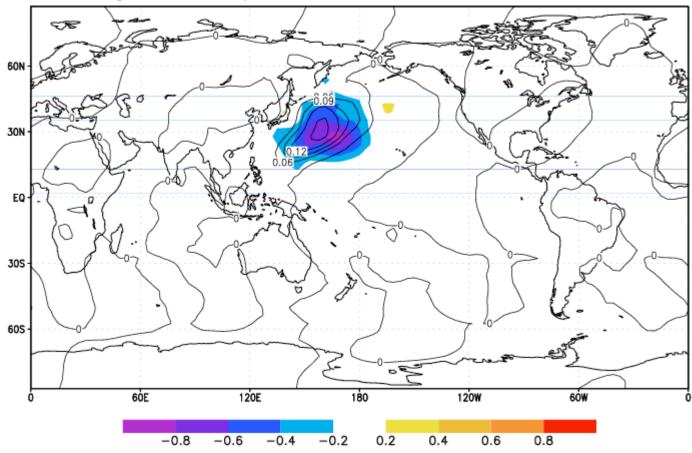




• \mathbf{u}_k is predictable given the forecast anomaly $\mathbf{x}^{f'}$ (over the dependent sample)

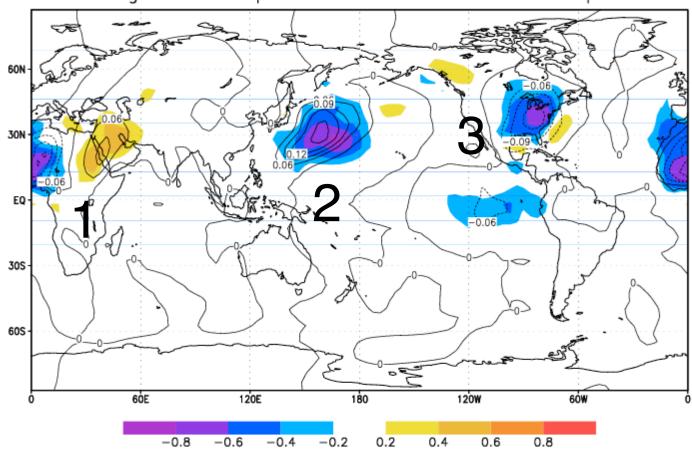
Analysis inc. (color) and state (contour) coupled signals





• \mathbf{u}_2 is predictable given the forecast anomaly $\mathbf{x}^{f'}$ (over the dependent sample)

Analysis inc. (color) and state (contour) coupled signals



• \mathbf{u}_k is predictable given the forecast anomaly $\mathbf{x}^{f\prime}$ (over the dependent sample)

Second step in our new approach:

Leith's empirical correction involves solving $C_{x^fx^f}\mathbf{w} = \mathbf{x}'$ for \mathbf{w} at each time step.

$$L\mathbf{x}' = C_{\delta \mathbf{x}^{\mathbf{a}} \mathbf{x}^{\mathbf{f}}} C_{\mathbf{x}^{\mathbf{f}} \mathbf{x}^{\mathbf{f}}}^{-1} \mathbf{x}'$$

$$= C_{\delta \mathbf{x}^{\mathbf{a}} \mathbf{x}^{\mathbf{f}}} \mathbf{w}$$

$$= \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top} \mathbf{w}$$

Second step in our new approach:

Leith's empirical correction involves solving $C_{x^fx^f}\mathbf{w} = \mathbf{x}'$ for \mathbf{w} at each time step.

$$L\mathbf{x}' = C_{\delta \mathbf{x}^{\mathbf{a}} \mathbf{x}^{\mathbf{f}}} C_{\mathbf{x}^{\mathbf{f}} \mathbf{x}^{\mathbf{f}}}^{-1} \mathbf{x}'$$

$$= C_{\delta \mathbf{x}^{\mathbf{a}} \mathbf{x}^{\mathbf{f}}} \mathbf{w}$$

$$= \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top} \mathbf{w}$$

However, only the component of \mathbf{w} in the space spanned by the right singular vectors \mathbf{v}_k can contribute to the empirical correction.

Second step in our new approach:

Leith's empirical correction involves solving $C_{x^fx^f}\mathbf{w} = \mathbf{x}'$ for \mathbf{w} at each time step.

$$L\mathbf{x}' = C_{\delta \mathbf{x}^{\mathbf{a}} \mathbf{x}^{\mathbf{f}}} C_{\mathbf{x}^{\mathbf{f}} \mathbf{x}^{\mathbf{f}}}^{-1} \mathbf{x}'$$

$$= C_{\delta \mathbf{x}^{\mathbf{a}} \mathbf{x}^{\mathbf{f}}} \mathbf{w}$$

$$= \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top} \mathbf{w}$$

However, only the component of \mathbf{w} in the space spanned by the right singular vectors \mathbf{v}_k can contribute to the empirical correction.

$$C_{bb} = \langle bb^{\top} \rangle$$

(over dependent sample)

Second step in our new approach:

Leith's empirical correction involves solving $C_{x^fx^f}\mathbf{w} = \mathbf{x}'$ for \mathbf{w} at each time step.

$$L\mathbf{x}' = C_{\delta \mathbf{x}^{\mathbf{a}} \mathbf{x}^{\mathbf{f}}} C_{\mathbf{x}^{\mathbf{f}} \mathbf{x}^{\mathbf{f}}}^{-1} \mathbf{x}'$$

$$= C_{\delta \mathbf{x}^{\mathbf{a}} \mathbf{x}^{\mathbf{f}}} \mathbf{w}$$

$$= \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top} \mathbf{w}$$

However, only the component of \mathbf{w} in the space spanned by the right singular vectors \mathbf{v}_k can contribute to the empirical correction.

$$\begin{aligned} C_{bb} &= < \mathbf{b} \mathbf{b}^\top > & \text{(over dependent sample)} \\ b_k(T) &= \mathbf{v}_k^\top \cdot \mathbf{x}'(T) & \text{(at independent sample forecast time T)} \end{aligned}$$

Second step in our new approach:

Leith's empirical correction involves solving $C_{x^fx^f}\mathbf{w} = \mathbf{x}'$ for \mathbf{w} at each time step.

$$L\mathbf{x}' = C_{\delta \mathbf{x}^{\mathbf{a}} \mathbf{x}^{\mathbf{f}}} C_{\mathbf{x}^{\mathbf{f}} \mathbf{x}^{\mathbf{f}}}^{-1} \mathbf{x}'$$

$$= C_{\delta \mathbf{x}^{\mathbf{a}} \mathbf{x}^{\mathbf{f}}} \mathbf{w}$$

$$= \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top} \mathbf{w}$$

However, only the component of \mathbf{w} in the space spanned by the right singular vectors $\mathbf{v_k}$ can contribute to the empirical correction.

$$C_{bb} = \langle \mathbf{bb}^{\top} \rangle$$
 (over dependent sample) $b_k(T) = \mathbf{v}_k^{\top} \cdot \mathbf{x}'(T)$ (at independent sample forecast time T)

The linear system $C_{bb}\gamma = \mathbf{b}$ may then be solved for γ at time T. The solution gives an approximation of \mathbf{w} , namely $\mathbf{w} \approx \sum_{k=1}^{K} \gamma_k \mathbf{v}_k$, which is exact if K = N.

The control model:

$$\dot{\mathbf{x}} = \mathbf{M}(\mathbf{x})$$

The state-independent *online* corrected model:

$$\dot{\mathbf{x}} = \mathbf{M}(\mathbf{x}) + \langle \delta \mathbf{x}_6^a \rangle \frac{1}{\Delta t}$$

Leith's state-dependent corrected model given by:

$$\dot{\mathbf{x}} = \mathbf{M}(\mathbf{x}) + \left[< \delta \mathbf{x}_6^{\mathrm{a}} > + \mathbf{L} \mathbf{x}' \right] \frac{1}{\Delta t}$$

Our low-dimensional state-dependent corrected model is given by:

$$\dot{\mathbf{x}} = \mathbf{M}(\mathbf{x}) + \left[< \delta \mathbf{x}_6^a > + \sum_{k=1}^K \mathbf{u}_k \sigma_k \gamma_k \right] \frac{1}{\Delta t}$$

where $\gamma = C_{bb}^{-1}\mathbf{b}$ and $b_k = \mathbf{v}_k^{\top} \cdot \mathbf{x}'$

Our low-dimensional state-dependent corrected model is given by

$$\dot{\mathbf{x}} = \mathbf{M}(\mathbf{x}) + \left[< \delta \mathbf{x}_6^a > + \sum_{k=1}^K \mathbf{u}_k \sigma_k \gamma_k \right] \frac{1}{\Delta t}$$

where $\gamma = C_{bb}^{-1}\mathbf{b}$ and $b_k = \mathbf{v}_k^{\top} \cdot \mathbf{x}'$

During forecasts, a few ($K\approx10$) dominant anomalous model state signals \mathbf{v}_k can be projected onto the anomalous model state vector \mathbf{x}' .

Our low-dimensional state-dependent corrected model is given by

$$\dot{\mathbf{x}} = \mathbf{M}(\mathbf{x}) + \left[< \delta \mathbf{x}_6^a > + \sum_{k=1}^K \mathbf{u}_k \sigma_k \gamma_k \right] \frac{1}{\Delta t}$$

where $\gamma = C_{bb}^{-1}\mathbf{b}$ and $b_k = \mathbf{v}_k^{\top} \cdot \mathbf{x}'$

During forecasts, a few ($K\approx10$) dominant anomalous model state signals \mathbf{v}_k can be projected onto the anomalous model state vector \mathbf{x}' . Then

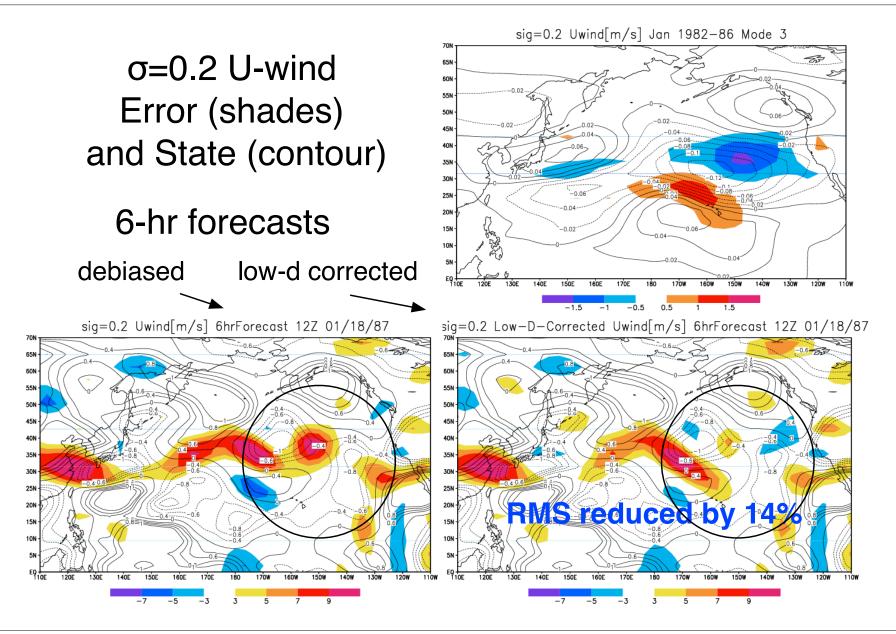
$$\sum_{k=1}^{K} \mathbf{u}_k \sigma_k \gamma_k$$

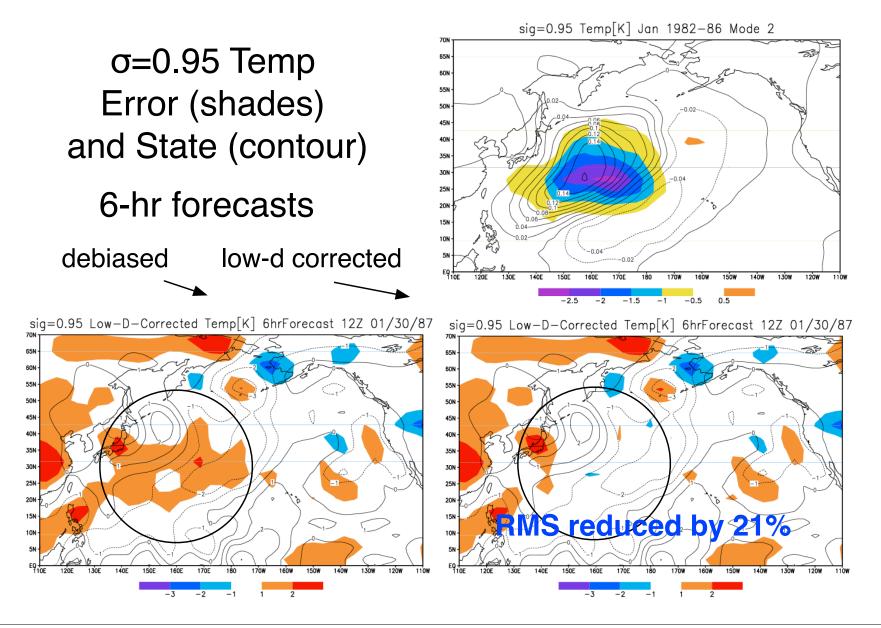
- is the best representation of the dependent sample analysis increment anomalies $\delta \mathbf{x}^{a'}$ in terms of the current anomalous forecast state \mathbf{x}'
- may amplify, dampen, or shift the flow anomaly local to \mathbf{u}_k

Our low-dimensional state-dependent corrected model is given by

$$\dot{\mathbf{x}} = \mathbf{M}(\mathbf{x}) + \left[< \delta \mathbf{x}_6^a > + \sum_{k=1}^K \mathbf{u}_k \sigma_k \gamma_k \right] \frac{1}{\Delta t}$$

where
$$\gamma = C_{bb}^{-1}\mathbf{b}$$
 and $b_k = \mathbf{v}_k^{\top} \cdot \mathbf{x}'$





We measure the forecast improvement using Leith's (univariate) dense and sparse correction operators and our low-dimensional approximation.

	Dense Leith	Sparse Leith	Low-Dim
Flops per time step	$O(N_{\rm gp}^3)$	$O(N_{\rm gp}^2)$	$O(N_{ m gp})$
Global Improvement	-8% (-4hr)	2% (1hr)	4% (2hr)
NH Extratropics Improvement	-6% (-3hr)	4% (2hr)	6% (3hr)

Chart contains average January 1987 500hPa improvement over state-independent corrected forecasts. Correction is more effective in regions where the heterogeneous correlations ρ are large.

Results

- State-independent correction of SPEEDY monthly bias dramatically improves forecasts
- Correction during integration outperforms correction a posteriori
- Time-dependent correction reduces amplitude of diurnal errors
- Our method of low-dimensional state-dependent correction:
 - improves forecasts, more notably where correlations are large
 - gives better results than Leith's correction operator
 - is 10 orders of magnitude cheaper! (SPEEDY implementation)
 - should work easily with existing data assimilation and ensemble schemes
 - requires only the analysis increments for sampling

Future

- Test implementation on NCEP operational model at reduced resolution with multivariate covariance.
- Implement with data assimilation and ensemble schemes
- Reduce jumps in reanalysis climatology due to changes in observing system

Research supported by NOAA THORPEX grant NA040AR4310103